A lightweight holographic imager for cloud microphysical studies from an untethered balloon (2024)

Ahn, E., Huang, Y., Chubb, T.H., Baumgardner, D., Isaac, P., deHoog, M., Siems, S.T., and Manton, M.J.: In situ observations of wintertime low-altitude clouds over the Southern Ocean, Q. J. Roy. Meteor. Soc., 143, 1381–1394, https://doi.org/10.1002/qj.3011, 2017. a, b, c, d

Ahn, E., Huang, Y., Siems, S.T., and Manton, M.J.: A Comparison of Cloud Microphysical Properties Derived From MODIS and CALIPSO With In Situ Measurements Over the Wintertime Southern Ocean, J. Geophys. Res.-Atmos., 123, 11120–11140, https://doi.org/10.1029/2018JD028535, 2018. a

Baumgardner, D., Abel, S.J., Axisa, D., Cotton, R., Crosier, J., Field, P., Gurganus, C., Heymsfield, A., Korolev, A., Krämer, M., Lawson, P., McFarquhar, G., Ulanowski, Z., and Um, J.: Cloud Ice Properties: In Situ Measurement Challenges, Meteor. Mon., 58, 1–23, https://doi.org/10.1175/amsmonographs-d-16-0011.1, 2017. a, b

Beals, M.J., Fugal, J.P., Shaw, R.A., Lu, J., Spuler, S.M., and Stith, J.L.: Holographic measurements of inhom*ogeneous cloud mixing at the centimeter scale, Science, 350, 87–90, https://doi.org/10.1126/science.aab0751, 2015. a

Beck, A., Henneberger, J., Schöpfer, S., Fugal, J., and Lohmann, U.: HoloGondel: in situ cloud observations on a cable car in the Swiss Alps using a holographic imager, Atmos. Meas. Tech., 10, 459–476, https://doi.org/10.5194/amt-10-459-2017, 2017. a

Beck, A., Henneberger, J., Fugal, J. P., David, R. O., Lacher, L., and Lohmann, U.: Impact of surface and near-surface processes on ice crystal concentrations measured at mountain-top research stations, Atmos. Chem. Phys., 18, 8909–8927, https://doi.org/10.5194/acp-18-8909-2018, 2018. a

Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida, R.: An introduction to Himawari-8/9 – Japan's new-generation geostationary meteorological satellites, J. Meteorol. Soc. Jpn., 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016. a

Boers, R., Jensen, J.B., Krummel, P.B., and Gerber, H.: Microphysical and short-wave radiative structure of wintertime stratocumulus clouds over the Southern Ocean, Q. J. Roy. Meteor. Soc., 122, 1307–1339, https://doi.org/10.1256/smsqj.53404, 1996. a, b, c, d, e

Boers, R., Jensen, J.B., and Krummel, P.B.: Microphysical and short-wave radiative structure of stratocumulus clouds over the Southern Ocean: Summer results and seasonal differences, Q. J. Roy. Meteor. Soc., 124, 151–168, https://doi.org/10.1002/qj.49712454507, 1998. a, b

Chambers, T.: Digital Holographic Studies of Cloud and Precipitation Microphysics, PhD thesis, University of Adelaide, https://hdl.handle.net/2440/136408 (last access: 21May 2024), 2022. a

Chambers, T. E., Reid, I. M., and Hamilton, M.: Data from the Untethered Balloon Launch of a Holographic Imager Into Cloud Near Adelaide, South Australia in August 2020, Zenodo [data set], https://doi.org/10.5281/zenodo.10297799, 2023. a

Chubb, T.H., Siems, S.T., and Manton, M.J.: On the Decline of Wintertime Precipitation in the Snowy Mountains of Southeastern Australia, J. Hydrometeorol., 12, 1483–1497, https://doi.org/10.1175/JHM-D-10-05021.1, 2011. a

Delene, D.J. and Deshler, T.: Vertical profiles of cloud condensation nuclei above Wyoming, J. Geophys. Res.-Atmos., 106, 12579–12588, https://doi.org/10.1029/2000JD900800, 2001. a

Desai, N., Glienke, S., Fugal, J., and Shaw, R.A.: Search for Microphysical Signatures of Stochastic Condensation in Marine Boundary Layer Clouds Using Airborne Digital Holography, J. Geophys. Res.-Atmos., 124, 2739–2752, https://doi.org/10.1029/2018JD029033, 2019. a

Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., Lunt, D., Mauritsen, T., Palmer, M., Watanabe, M., Wild, M., and Zhang, H.: The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity, in: Climate Change 2021: The Physical Science Basis. Contribution of Working GroupI to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J., Mayco*ck, T., Waterfield, T., Yelekci, O., Yu, R., and Zhou, B., Chap.7, Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/9781009157896, 2021. a

Garcia-Sucerquia, J., Xu, W., Jericho, S.K., Klages, P., Jericho, M.H., and Kreuzer, H.J.: Digital in-line holographic microscopy, Appl. Optics, 45, 836–850, https://doi.org/10.1364/AO.45.000836, 2006. a, b

Gultepe, I., Sharman, R., WIlliams, P.D., Zhou, B., Ellrod, G., Minnis, P., Trier, S., Griffin, S., Yum, S.S., Gharabaghi, B., Feltz, W., Temimi, M., Pu, Z., Storer, L.N., Kneringer, P., Wetson, M.J., Chuang, H.-Y., Thobois, L., Dimri, A.P., Dietz, S.J., Franca, G.B., Almeida, M.V., and Albquerque Neto, F.L.: A Review of High Impact Weather for Aviation Meteorology, Pure Appl. Geophys., 176, 1869–1921, https://doi.org/10.1007/s00024-019-02168-6, 2019. a

Hahn, J., Reyes, R. D.L., Bernlöhr, K., Krüger, P., Lo, Y. T.E., Chadwick, P.M., Daniel, M.K., Deil, C., Gast, H., Kosack, K., and Marandon, V.: Impact of aerosols and adverse atmospheric conditions on the data quality for spectral analysis of the H.E.S.S. telescopes, Astropart. Phys., 54, 25–32, https://doi.org/10.1016/j.astropartphys.2013.10.003, 2014. a

Hamann, U., Walther, A., Baum, B., Bennartz, R., Bugliaro, L., Derrien, M., Francis, P. N., Heidinger, A., Joro, S., Kniffka, A., Le Gléau, H., Lockhoff, M., Lutz, H.-J., Meirink, J. F., Minnis, P., Palikonda, R., Roebeling, R., Thoss, A., Platnick, S., Watts, P., and Wind, G.: Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms, Atmos. Meas. Tech., 7, 2839–2867, https://doi.org/10.5194/amt-7-2839-2014, 2014. a

Hamilton, M., Alexander, S.P., Protat, A., Siems, S., and Carpentier, S.: Polarimetric backscatter sonde observations of southern ocean clouds and aerosols, Atmosphere, 11, 1–20, https://doi.org/10.3390/ATMOS11040399, 2020. a, b, c, d

Henneberger, J., Fugal, J. P., Stetzer, O., and Lohmann, U.: HOLIMO II: a digital holographic instrument for ground-based in situ observations of microphysical properties of mixed-phase clouds, Atmos. Meas. Tech., 6, 2975–2987, https://doi.org/10.5194/amt-6-2975-2013, 2013. a

Hogan, R.J., Illingworth, A.J., O'Connor, E.J., and Poiares Baptista, J.P.: Characteristics of mixed-phase clouds. II: A climatology from ground-based lidar, Q. J. Roy. Meteor. Soc., 129, 2117–2134, https://doi.org/10.1256/qj.01.209, 2003. a

Huang, Y., Protat, A., Siems, S.T., and Manton, M.J.: A-Train Observations of Maritime Midlatitude Storm-Track Cloud Systems: Comparing the Southern Ocean against the North Atlantic, J. Climate, 28, 1920–1939, https://doi.org/10.1175/JCLI-D-14-00169.1, 2015. a

Huang, Y., Siems, S., Manton, M., Protat, A., Majewski, L., and Nguyen, H.: Evaluating Himawari-8 Cloud Products Using Shipborne and CALIPSO Observations : Cloud-Top Height and Cloud-Top Temperature, J. Atmos. Ocean. Tech., 36, 2327–2347, https://doi.org/10.1175/JTECH-D-18-0231.1, 2019. a

Ishida, H. and Nakajima, T.Y.: Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager, J. Geophys. Res.-Atmos., 114, 1–16, https://doi.org/10.1029/2008JD010710, 2009. a

Johnson, A., Lasher-Trapp, S., Bansemer, A., Ulanowski, Z., and Heymsfield, A.J.: Difficulties in early ice detection with the small ice Detector-2 HIAPER (SID-2H) in maritime cumuli, J. Atmos. Ocean. Tech., 31, 1263–1275, https://doi.org/10.1175/JTECH-D-13-00079.1, 2014. a

Kang, L., Marchand, R., and Smith, W.: Evaluation of MODIS and Himawari-8 Low Clouds Retrievals Over the Southern Ocean With In Situ Measurements From the SOCRATES Campaign, Earth Space Sci., 8, 1–30, https://doi.org/10.1029/2020EA001397, 2021. a

Kanji, Z.A., Ladino, L.A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo, D.J., and Krämer, M.: Overview of Ice Nucleating Particles, Meteor. Mon., 58, 1–33, https://doi.org/10.1175/amsmonographs-d-16-0006.1, 2017. a

Kawamoto, K., Nakajima, T., and Nakajima, T.Y.: A Global Determination of Cloud Microphysics with AVHRR Remote Sensing, J. Climate, 14, 2054–2068, https://doi.org/10.1175/1520-0442(2001)014<2054:AGDOCM>2.0.CO;2, 2001. a

Korolev, A. and Isaac, G.A.: Shattering during sampling by OAPs and HVPS. PartI: Snow particles, J. Atmos. Ocean. Tech., 22, 528–542, https://doi.org/10.1175/JTECH1720.1, 2005. a

Korolev, A. and Isaac, G.A.: Relative Humidity in Liquid, Mixed-Phase, and Ice Clouds, J. Atmos. Sci., 63, 2865–2880, https://doi.org/10.1175/JAS3784.1, 2006. a

Kuma, P., McDonald, A. J., Morgenstern, O., Alexander, S. P., Cassano, J. J., Garrett, S., Halla, J., Hartery, S., Harvey, M. J., Parsons, S., Plank, G., Varma, V., and Williams, J.: Evaluation of Southern Ocean cloud in the HadGEM3 general circulation model and MERRA-2 reanalysis using ship-based observations, Atmos. Chem. Phys., 20, 6607–6630, https://doi.org/10.5194/acp-20-6607-2020, 2020. a

Lance, S.: Coincidence Errors in a Cloud Droplet Probe (CDP) and a Cloud and Aerosol Spectrometer (CAS), and the Improved Performance of a Modified CDP, J. Atmos. Ocean. Tech., 29, 1532–1541, https://doi.org/10.1175/JTECH-D-11-00208.1, 2012. a

MacCready, P.B. and Todd, C.J.: Continuous Particle Sampler, J. Appl. Meteorol., 3, 450–460, 1964. a

Mace, G.G. and Protat, A.: Clouds over the Southern Ocean as Observed from the R/V Investigator during CAPRICORN. PartI: Cloud Occurrence and Phase Partitioning, J. Appl. Meteorol. Clim., 57, 1783–1803, https://doi.org/10.1175/JAMC-D-17-0194.1, 2018. a, b

Mace, G.G., Protat, A., Humphries, R.S., Alexander, S.P., Mcrobert, I.M., Ward, J., Selleck, P., Keywood, M., and Mcfarquhar, G.M.: Southern Ocean Cloud Properties Derived From CAPRICORN and MARCUS Data, J. Geophys. Res.-Atmos., 126, 1–23, https://doi.org/10.1029/2020JD033368, 2021. a

Magee, N., Boaggio, K., Staskiewicz, S., Lynn, A., Zhao, X., Tusay, N., Schuh, T., Bandamede, M., Bancroft, L., Connelly, D., Hurler, K., Miner, B., and Khoudary, E.: Captured cirrus ice particles in high definition, Atmos. Chem. Phys., 21, 7171–7185, https://doi.org/10.5194/acp-21-7171-2021, 2021. a

McCluskey, C.S., DeMott, P.J., Ma, P.-L., and Burrows, S.M.: Numerical Representations of Marine Ice-Nucleating Particles in Remote Marine Environments Evaluated Against Observations, Geophys. Res. Lett., 46, 7838–7847, https://doi.org/10.1029/2018GL081861, 2019. a

Mccoy, I.L., Mccoy, D.T., Wood, R., Regayre, L., Watson-parris, D., Grosvenor, D.P., Mulcahy, J.P., Hu, Y., Bender, F. A.-M., Field, P.R., Carslaw, K.S., and Gordon, H.: The hemispheric contrast in cloud microphysical properties constrains aerosol forcing, P. Natl. Acad. Sci. USA, 117, 18998–19006, https://doi.org/10.1073/pnas.1922502117, 2020. a

Mccoy, I.L., Bretherton, C.S., Wood, R., Twohy, C.H., Gettelman, A., Bardeen, C.G., and Toohey, D.W.: Influences of Recent Particle Formation on Southern Ocean Aerosol Variability and Low Cloud Properties, J. Geophys. Res.-Atmos., 126, 1–27, https://doi.org/10.1029/2020JD033529, 2021. a

McFarquhar, G.M., Bretherton, C., Marchand, R., Protat, A., DeMott, P.J., Alexander, S.P., Roberts, G.C., Twohy, C.H., Toohey, D., Siems, S., Huang, Y., Wood, R., Rauber, R.M., Lasher-Trapp, S., Jensen, J., Stith, J., Mace, J., Um, J., Järvinen, E., Schnaiter, M., Gettelman, A., Sanchez, K.J., McCluskey, C.S., Russell, L.M., McCoy, I.L., Atlas, R., Bardeen, C.G., Moore, K.A., Hill, T. C.J., Humphries, R.S., Keywood, M.D., Ristovski, Z., Cravigan, L., Schofield, R., Fairall, C., Mallet, M.D., Kreidenweis, S.M., Rainwater, B., D'Alessandro, J., Wang, Y., Wu, W., Saliba, G., Levin, E. J.T., Ding, S., Lang, F., Truong, S.C., Wolff, C., Haggerty, J., Harvey, M.J., Klekociuk, A., and McDonald, A.: Observations of clouds, aerosols, precipitation, and surface radiation over the Southern Ocean: An overview of CAPRICORN, MARCUS, MICRE and SOCRATES, B. Am. Meteorol. Soc., 102, E894–E928, https://doi.org/10.1175/bams-d-20-0132.1, 2021.​​​​​​​ a, b

Miles, N.L., Verlinde, J., and Clothiaux, E.E.: Cloud droplet size distributions in low-level stratiform clouds, J. Atmos. Sci., 57, 295–311, https://doi.org/10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2, 2000. a, b, c

Morrison, H., Walqui, M. V.L., Fridlind, A.M., Grabowski, W.W., Harrington, J.Y., Hoose, C., Korolev, A., Kumjian, M.R., Milbrandt, J.A., Pawlowska, H., Posselt, D.J., Prat, O.P., Reimel, K.J., Shima, S.-I., Diedenhoven, B.V., and Xue, L.: Confronting the Challenge of Modeling Cloud and Precipitation Microphysics, J. Adv. Model. Earth Sys., 12, e2019MS001689, https://doi.org/10.1029/2019MS001689, 2020.​​​​​​​ a, b

Murakami, M. and Matsuo, T.: Development of the Hydrometeor Videosonde, J. Atmos. Ocean. Tech., 7, 613–620, https://doi.org/10.1175/1520-0426(1990)007<0613:DOTHV>2.0.CO;2, 1990. a

O, K.-T., Wood, R., and Bretherton, C.S.: Ultraclean Layers and Optically Thin Clouds in the Stratocumulus-to-Cumulus Transition. PartII: Depletion of Cloud Droplets and Cloud Condensation Nuclei through Collision – Coalescence, J. Atmos. Sci., 75, 1653–1673, https://doi.org/10.1175/JAS-D-17-0218.1, 2018. a

Pruppacher, H.R. and Klett, J.D.: Microphysics of Clouds and Precipitation, 2nd edn., Springer Dordrecht, Heidelberg, https://doi.org/10.1007/978-0-306-48100-0, 2010. a

Ramelli, F., Beck, A., Henneberger, J., and Lohmann, U.: Using a holographic imager on a tethered balloon system for microphysical observations of boundary layer clouds, Atmos. Meas. Tech., 13, 925–939, https://doi.org/10.5194/amt-13-925-2020, 2020. a, b

Ratcliffe, J.A.: Some Aspects of Diffraction Theory and their Application to the Ionosphere, Rep. Prog. Phys., 19, 188–267, https://doi.org/10.1088/0034-4885/19/1/306, 1956. a

Sassen, K., Wang, Z., Khvorostyanov, V.I., Stephens, G.L., and Bennedetti, A.: Cirrus Cloud Ice Water Content Radar Algorithm Evaluation Using an Explicit Cloud Microphysical Model, J. Appl. Meteorol., 41, 620–628, https://doi.org/10.1175/1520-0450(2002)041<0620:CCIWCR>2.0.CO;2, 2002. a

Schlenczek, O., Fugal, J.P., Lloyd, G., Bower, K.N., Choularton, T.W., Flynn, M., Crosier, J., and Borrmann, S.: Microphysical Properties of Ice Crystal Precipitation and Surface-Generated Ice Crystals in a High Alpine Environment in Switzerland, J. Appl. Meteorol. Clim., 56, 433–453, https://doi.org/10.1175/JAMC-D-16-0060.1, 2017. a

Schnars, U. and Jüptner, W.: Direct recording of holograms by a CCD target and numerical reconstruction, Appl. Optics, 33, 179–181, https://doi.org/10.1364/AO.33.000179, 1994. a, b

Schuyler, T.J., Gohari, S. M.I., Pundsack, G., Berchoff, D., and Guzman, M.I.: Using a Balloon-Launched Unmanned Glider to Validate Real-Time WRF Modeling, Sensors-Basel, 19, 1914, https://doi.org/10.3390/s19081914, 2019. a

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System, B. Am. Meteorol. Soc., 96, 2059–2078, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015. a

Takahashi, T., Sugimoto, S., Kawano, T., and Suzuki, K.: Microphysical Structure and Lightning Initiation in Hokuriku Winter Clouds, J. Geophys. Res.-Atmos., 124, 13156–13181, https://doi.org/10.1029/2018JD030227, 2019. a

Ulanowski, Z., Kaye, P. H., Hirst, E., Greenaway, R. S., Cotton, R. J., Hesse, E., and Collier, C. T.: Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements, Atmos. Chem. Phys., 14, 1649–1662, https://doi.org/10.5194/acp-14-1649-2014, 2014. a

Um, J., McFarquhar, G. M., Hong, Y. P., Lee, S.-S., Jung, C. H., Lawson, R. P., and Mo, Q.: Dimensions and aspect ratios of natural ice crystals, Atmos. Chem. Phys., 15, 3933–3956, https://doi.org/10.5194/acp-15-3933-2015, 2015. a

University of Wyoming: 94672 YPAD Adelaide Airport Observations at 00Z 08 Aug 2020, University of Wyoming, https://weather.uwyo.edu/cgi-bin/sounding?region=pac&TYPE=TEXT%3ALIST&YEAR=2020&MONTH=08&FROM=0800&TO=0812&STNM=94672&ICE=1&REPLOT=1 (last access: 12March 2024), 2020. a

Vergara-Temprado, J., Miltenberger, A.K., Furtado, K., Grosvenor, D.P., Shipway, B.J., Hill, A.A., Wilkinson, J.M., Field, P.R., Murray, B.J., and Carslaw, K.S.: Strong Control of Southern Ocean Cloud Reflectivity by Ice-Nucleating Particles, P. Natl. Acad. Sci. USA, 115, 2687–2692, https://doi.org/10.1073/pnas.1721627115, 2018. a

Weitkamp, C.: Lidar; Range-Resolved Optical Remote Sensing of the Atmosphere, Springer Science+Business Media Inc., New York, https://doi.org/10.1007/b106786, 2005. a

Westbrook, C.D., Illingworth, A.J., O'Connor, E.J., and Hogan, R.J.: Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds, Q. J. Roy. Meteor. Soc., 136, 260–276, https://doi.org/10.1002/qj.528, 2010. a

Winker, D.M., Pelon, J., Coakley, J.A., Ackerman, S.A., Charlson, R.J., Colarco, P.R., Flamant, P., Fu, Q., Hoff, R.M., Kittaka, C., Kubar, T.L., Le Treut, H., McCormick, M.P., Mégie, G., Poole, L., Powell, K., Trepte, K., Vaughan, M.A., and Wielicki, B.A.: The Calipso Mission: A Global 3D View of Aerosols and Clouds, B. Am. Meteor. Soc., 91, 1211–1229, https://doi.org/10.1175/2010BAMS3009.1, 2010. a

Wofsy, S.C.: HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of gases and aerosols, Philos. T. Roy. Soc., 369, 2073–2086, https://doi.org/10.1098/rsta.2010.0313, 2011. a, b

Wood, R., O, K.-T., Bretherton, C.S., Mohrmann, J., Albrecht, B.A., Zuidema, P., Ghate, V., Schwartz, C., Eloranta, E., Glienke, S., Shaw, R.A., Fugal, J., and Minnis, P.: Ultraclean Layers and Optically Thin Clouds in the Stratocumulus-to-Cumulus Transition. PartI: Observations, J. Atmos. Sci., 75, 1631–1652, https://doi.org/10.1175/JAS-D-17-0213.1, 2018.  a

Yang, P., Hioki, S., Saito, M., Kuo, C.-P., Baum, B.A., and Liou, K.-N.: A review of ice cloud optical property models for passive satellite remote sensing, Atmosphere, 9, 1–31, https://doi.org/10.3390/atmos9120499, 2018. a

A lightweight holographic imager for cloud microphysical studies from an untethered balloon (2024)
Top Articles
Latest Posts
Article information

Author: Rueben Jacobs

Last Updated:

Views: 6339

Rating: 4.7 / 5 (77 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Rueben Jacobs

Birthday: 1999-03-14

Address: 951 Caterina Walk, Schambergerside, CA 67667-0896

Phone: +6881806848632

Job: Internal Education Planner

Hobby: Candle making, Cabaret, Poi, Gambling, Rock climbing, Wood carving, Computer programming

Introduction: My name is Rueben Jacobs, I am a cooperative, beautiful, kind, comfortable, glamorous, open, magnificent person who loves writing and wants to share my knowledge and understanding with you.